Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 249: 120924, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029486

RESUMO

To offset the imperfections of higher cost and emission of CO2 greenhouse gas in heterotrophic denitrification (HDN) as well as longer start-up time in autotrophic denitrification (ADN), we synergized the potential ternary electron donors of organic carbon source, thiosulfate and zero-valent iron (Fe0) to achieve efficient mixotrophic denitrification (MDN) of oligotrophic secondary effluent. When the influent chemical oxygen demand to nitrogen (COD/N) ratio ascended gradually in the batch operation with sufficient sulfur to nitrogen (S/N) ratio, the MDN with thiosulfate and Fe0 added achieved the highest TN removal for treating simulated and authentic secondary effluents. The external carbon is imperative for initiating MDN, while thiosulfate is indispensable for promoting TN removal efficiency. Although Fe0 hardly donated electrons for denitrification, the suitable circumneutral environment for denitrification was implemented by OH- released from Fe0 corrosion, which neutralized H+generated during thiosulfate-driven ADN. Meanwhile, Fe0 corrosion consumed the dissolved oxygen (DO) and created the low DO environment suitable for anoxic denitrification. This process was further confirmed by the continuous flow operation for treating authentic secondary effluent. The TN removal efficiency achieved its maximum under the combination condition of influent COD/N ratio of 3.1-3.5 and S/N ratio of 2.0-2.1. Whether in batch or continuous flow operation, the coordination of thiosulfate and Fe0 maintained the dominance of Thiobacillus for ADN, with the dominant heterotrophic denitrifiers (e.g., Plasticicumulans, Terrimonas, Rhodanobacter and KD4-96) coexisting in MDN system. The interaction insights of ternary electron donors in MDN established a pathway for realizing high-efficiency nitrogen removal of secondary effluent.


Assuntos
Desnitrificação , Tiossulfatos , Elétrons , Carbono , Reatores Biológicos , Nitratos/metabolismo , Processos Autotróficos , Nitrogênio
2.
Sci Total Environ ; 792: 148361, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153772

RESUMO

The influences of polyether sulfone (PES) microplastics and different structures aromatic carboxylic acids such as benzoic acid (BA), phthalic acid (PA), hemimellitic acid (HA), and 1-naphthoic acid (1-NA) on the performances and characteristics of anaerobic granular sludge as well as the microbial community were investigated. The chemical oxygen demand (COD) removal efficiency was the highest in the experimental group with 40 mg/L BA, reaching 90.1%. The inhibitory effect of aromatic carboxylic acids addition on the 2,3,5-triphenyltetrazolium chloride (TTC) activity was more obvious than that on 2-para (iodo-phenyl)-3(nitrophenyl)-5(phenyl) tetrazolium chloride (INT) activity. Compared with the control group (only 0.5 g/L PES microplastics, 60.6 mg TF·g TSS·h-1), the inhibition effect of TTC activity was 32.5 mg TF·g TSS·h-1 and 44.3 mg TF·g TSS·h-1 in the 40 mg/L HA and 40 mg/L 1-NA experimental groups, respectively. When aromatic carboxylic acids were added, the activities of acetate kinase and coenzyme F420 in the anaerobic granular sludge decreased. The excitation-emission matrix (EEM) fluorescence spectra indicated that loosely bound extracellular polymeric substances (LB-EPS) began to decay. After the addition of different aromatic carboxylic acids, the CC and CH functional groups of the anaerobic granular sludge increased, suggesting that aromatic carboxylic acids migrated to the surface of anaerobic granular sludge, such a transfer would lead to changes in anaerobic granular sludge performance. High-throughput sequencing technology showed that the dominant microbial communities in the anaerobic granular sludge were Proteobacteria, Methanothrix, and Methanomicrobia. After the addition of aromatic carboxylic acids, the relative abundances of Proteobacteria, Methanobacterium, and Methanospirillum increased. In the presence of PES, 1-NA had the most serious toxicity to the anaerobic granular sludge.


Assuntos
Microbiota , Esgotos , Anaerobiose , Ácidos Carboxílicos/toxicidade , Microplásticos , Plásticos , Eliminação de Resíduos Líquidos
3.
Huan Jing Ke Xue ; 42(4): 1946-1955, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742830

RESUMO

The effects of polyether sulfone (PES) microplastics and 2,4-dichlorophenol (2,4-DCP) on the loosely-bound extracellular polymeric substances (LB-EPS) and tightly-bound EPS (TB-EPS) of anaerobic granular sludge were investigated. In addition, high-throughput sequencing technology was used to analyze the changes in the microbial community and gene functions in the anaerobic granular sludge. The results revealed that the chemical oxygen demand (COD) removal rates of the 2,4-DCP and PES+2,4-DCP experimental groups were 35% and 37%, which were 57% and 55% lower than that of the blank control group, while the COD removal rates of the PES experimental group remained around 90%. After the addition of the PES microplastics and 2,4-DCP, the protein and polysaccharide contents in the LB-EPS decreased compared with the control group, and the polysaccharide content in TB-EPS increased the least. In presence of the PES microplastics and 2,4-DCP, the activity of coenzyme F420 was inhibited. Through high-throughput sequencing, the microbial richness and diversity of the anaerobic granular sludge in the experimental group were reduced with the addition of the PES microplastics or 2,4-DCP. In the control group and the experimental group, the dominant bacteria at the phylum level were Proteobacteria (13.45%-44.47%), Firmicutes (6.86%-21.67%), and Actinobacteria (3.16%-18.11%). The abundance of ß-Proteobacteria in the PES+2,4-DCP experimental group was reduced by 15.28%, while the abundance of γ-Proteobacteria increased by 28.44% compared with the control group. Based on the phylogenetic investigation of the communities using the reconstruction of unobserved states (PICRUSt) analysis, it was found that in the experimental group with the PES microplastics or 2,4-DCP, the genes related to the sludge energy metabolism function were 0.25%-0.72% more than the control group; therefore, the abundance of genes related to the transport function group decreased significantly.


Assuntos
Microbiota , Esgotos , Anaerobiose , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Filogenia , Plásticos , Polímeros , Sulfonas , Eliminação de Resíduos Líquidos
4.
Ecotoxicol Environ Saf ; 205: 111318, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979806

RESUMO

The retention of polyether sulfone (PES) and bisphenol A (BPA) in wastewater has received extensive attention. The effects of PES and BPA on the removal of organic matter by anaerobic granular sludge were investigated. We also analyzed the changes in the electron transport system and the effects on the composition of extracellular polymeric substances (EPS), as well as alternations of the microbial community in the anaerobic granular sludge. In the experimental groups which received BPA, the removal of the chemical oxygen demand (COD) were significantly suppressed, which an average removal efficiency of less than 65%, 30% lower than that of the control group. In the loosely-bound EPS (LB-EPS) excitation-emission matrix (EEM) spectra, the absorption peak of tryptophan disappeared when the BPA pollutants was added, which it was present in the control group without added pollutants. The addition of PES and BPA also affected protease, acetate kinase, and coenzyme F420 activities in the anaerobic granular sludge. Especially, the coenzyme F420 reduced from 0.0045 to 0.0017 µmol/L in the presence of PES and BPA. The relative abundance of Spirochaetes decreased in the presence of PES and BPA, while the relative abundance of Bacteroidetes increased from 12.98% to 22.87%. At the genus level, in the presence of PES and BPA, the relative abundance of Acinetobacter increased from 2.20% to 9.64% and Hydrogenophaga decreased sharply from 15.58% to 0.12%.


Assuntos
Compostos Benzidrílicos/análise , Microplásticos/análise , Fenóis/análise , Polímeros/química , Sulfonas/química , Eliminação de Resíduos Líquidos , Anaerobiose , Compostos Benzidrílicos/toxicidade , Análise da Demanda Biológica de Oxigênio , Matriz Extracelular de Substâncias Poliméricas , Microbiota/efeitos dos fármacos , Microplásticos/toxicidade , Fenóis/toxicidade , Plásticos , Esgotos/química , Águas Residuárias
5.
Chemosphere ; 235: 84-95, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31255769

RESUMO

Effects of Fe3O4 NPs heterogeneous Fenton-like pretreatment on the physicochemical properties and microbial community structure of anaerobic granular sludge (AGS) and activated sludge (AS) with cephalexin were investigated. Results showed that the average removal rate of chemical oxygen demand (COD) by the AGS was 80.9%, 85.9%, 90.3% and 91.6%, respectively, at cephalexin without pretreatment, pretreatment with 20% (H2O2), 40% (H2O2) and 60% (H2O2). Compared to the reactor without pretreatment, the COD removal rate increased by 24.14% with 60% (H2O2) pretreatment for the AS. Dehydrogenase levels in the AS were 313.05, 351.12, 434.81 and 480.77 mg TF (g·h)-1, which increased with higher concentrations of the pretreatment. Three-dimensional fluorescence (EEM) spectra analysis showed that the absorption peak intensities of humic acid in soluble microbial products (SMP) decreased in the AGS with increasing pretreatment. In the AGS, the dominant bacterial populations were Levilinea, Litorilinea and Clostridium sensu stricto. Clostridium sensu stricto accounting for 4.35% without pretreatment, while it was as high as 17% when it was pretreated with 60% (H2O2). The increase in the proportion of Clostridium sensu stricto was beneficial to the removal of organic pollutants. The pretreatment was also beneficial to the growth of acetic acid producing Methanothrix. For the AS, Gemmobacter were the dominant species, which increased from 6.56% to 32.61% after increasing the pretreatment to 40% (H2O2). Furthermore, the microbial capacities of amino acid metabolism and carbohydrate metabolism were enhanced by addition of pretreatment.


Assuntos
Anaerobiose , Cefalexina/farmacologia , Esgotos/química , Aminoácidos/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos , Substâncias Húmicas/análise , Peróxido de Hidrogênio/química , Microbiota/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos
6.
Bioresour Technol ; 276: 81-90, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30611090

RESUMO

A combined process coupling a Fe3O4 nanoparticles (Fe3O4 NPs) heterogeneous Fenton-like reaction and an anaerobic biological technology was investigated in order to effectively treat amoxicillin-containing wastewater. With the increase in the pretreatment degree, the average COD removal rate correspondingly increased from 84.8% to 92.4% using the anaerobic biological treatment, and the biodegradability and COD removal efficiency was improved by the pretreatment processes. During the process of amoxicillin degradation, hydroxyl free radicals tended to attack the lactamide, amide and pentacyclic rings of amoxicillin. In the excitation-emission matrix (EEM) spectra of soluble microbial products (SMPs), the absorption peak of humic acid gradually decreased with application of the pretreatment. The pretreatment products were more beneficial to the characteristics of anaerobic granular sludge. For the microbial community structure, the proportion of Methanothrix and Clostridia increased with addition the heterogeneous Fenton-like pretreatment, which favored conversion of organic contaminants to volatile fatty acids and biogas.


Assuntos
Amoxicilina/metabolismo , Microbiota , Esgotos/química , Anaerobiose , Bactérias Anaeróbias/metabolismo , Biocombustíveis , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Ácidos Graxos Voláteis/biossíntese , Microbiota/efeitos dos fármacos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...